- (a) Define the least upper bound property and the completeness property of R.
 (b) Let x ∈ R. Find sup(A), where A = {x/n} : n ∈ N}.
- 2. Let $p: \mathbb{R} \to \mathbb{R}$ such that $p(x) = 1 + 2x + 3x^2$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers.
 - (a) Suppose $\liminf_{n\to\infty} x_n = x \in \mathbb{R}$ does it imply $\liminf_{n\to\infty} p(x_n) = p(x)$?
 - (b) Suppose $x_n \to x$, with $x \in \mathbb{R}$. From the definition of limit show that $p(x_n) \to p(x)$.
- 3. Please decide whether the following statements are true or false. If you decide that a statement is true then please provide a proof. If you decide that a statement is false then please provide a counter-example with justification.
 - (a) If $I_n, n \ge 1$ is a sequence of nested intervals (i.e $I_{n+1} \subset I_n$ for all $n \ge 1$) then $\bigcap_{n=1}^{\infty} I_n \ne \emptyset$.
 - (b) Suppose $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are such that for every $\epsilon > 0$ there is an M such that $|x_n y_n| < \epsilon$ for all $n \ge M$. $\limsup_{n \to \infty} x_n = \limsup_{n \to \infty} y_n$.
 - (c) There is no ordering on the field of complex numbers such that it becomes an ordered field.
 - (d) Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be two convergent sequences of real numbers such that $x_n < y_n$ for all $n \in N$. Then $\lim_{n \to \infty} x_n < \lim_{n \to \infty} y_n$.
- 4. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{n^n}{n!} x^n$.
- 5. Let $a, b, c \in \mathbb{R}$. Suppose $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers such that

$$x_n = \frac{a}{n} + \frac{b}{n+1} + \frac{c}{n+2}, \quad \forall n \in \mathbb{N}$$

Decide whether the series $\sum_{n=1}^{\infty} x_n$ converges or not.